COURSE GUIDE – short form

Academic year 2024-2025

Course name ¹	THERMAL TREATMENTS			Course	code	3.ISI.13.DD-1			
Course type ²	DD	Category ³	DO	Year of study	3	Semester	6	Number of credit points	3

Faculty	Material Science and Engineering	Number of teaching and learning hours ⁴			ning		
Field	Industrial Engineering		L	Т	LB	Р	IS
Specialization	Specialization Safety Engineering in Industry		28	-	28	-	19

Pre-requisites from the curriculum ⁵	Compulsory	-
	Recommended	-

General objective ⁶	The discipline aims to create a logical chain starting from the mechanical characteristics of metallic materials, their position in relation to the ideal values and the ways of modifying these characteristics through heat treatment. The structure and properties of steels and cast irons are analyzed in particular, and implicitly the structural transformations developed through heat treatments. The theoretical and technological bases of the main thermal treatments are presented. The approach to heat treatment technologies is made so that the theoretical principles can be applied in solving practical problems specific to the industry.
Specific objectives ⁷	• By carrying out practical work within the discipline, the premises for the effective participation of young students are created, starting with theoretical research, planning the experiment, establishing the experimental conditions, managing the technological process, acquiring and processing data, verifying the results through specific tests and complex analyses, finalizing the conclusions. It is appreciated that the described approach allows for an instructive, complete and useful process.
Course description ⁸	thermal treatment, structure, properties, thermal cycle, annealing, stress relief, tempering, martensite, tempering; improvement, sipping, aging, steel, cast iron, alloy

	Assesment		Sche- dule ⁹	Percentage in the final grade (minimum grade) ¹⁰
	Class tests along the semester	%		
A Final	Home works	%		
A. FINAI	Other activities	%		
form ¹¹	Examination procedures and		Week	
101111	conditions:exam.oral		14	60% (minimum 5)
Exam /	Probe 1: working conditions; percent of the	100%		
Colloquium	final grade %;	(minimum 5)		
	Writing exam with 3 subjects from the			
	theoretical part of the course.			
C. Laboratory	Acttvity during laboratory			40% (minimum 5)

Course organizer	Asociate Professor PhD. Eng. Ioan Gabriel SANDU	
Teaching assistants	Asociate Professor PhD. Eng. Ioan Gabriel SANDU	

¹Course name from the curriculum

² DF – fundamental, DID – in the field, DS – specialty, DC – complementary (from the curriculum)

³ DI – imposed, DO –optional, DL – facultative (from the curriculum)

⁴ Points 3.8, 3.5, 3.6a,b,c, 3.7 from the Course guide – extended form (L-lecture, T-tutorial, LB-laboratory works, P-project, IS-individual study)

⁵ According to 4.1 – Pre-requisites - from the Course guide – extended form

⁶ According to 7.1 from the Course guide – extended form

⁷ According to 7.2 from the Course guide – extended form

⁸ Short description of the course, according to point 8 from the Course guide – extended form

 $^{^{9}}$ For continuous assessment: weeks 1 – 14, for final assessment – colloquium: week 14, for final assessment-exam: exam period

¹⁰ A minimum grade might be imposed for some assessment stages

¹¹ Exam or colloquium