COURSE GUIDE – short form

Academic year 2024-2025

Course name ¹	INDUSTRIAL COMFORT TERMOTECHNICS			Course	code	3.ISI.11.DS-1			
Course type ²	DS	Category ³	DO	Year of study	3	Semester	5	Number of credit points	4

Faculty	Material Science and Engineering	Number of teaching and learning hours ⁴		ning			
Field	Industrial Engineering	Total	L	Т	LB	Р	IS
Specialization	alization Safety Engineering in Industry		28	-	28	-	44

Pre-requisites from the curriculum ⁵	Compulsory	-
	Recommended	-

General objective ⁶	Developing practical and technical logical thinking sense to integrate the principles of work safety and health in industry, by identifying and evaluating occupational risks, based on a thorough theoretical training. Discipline trains specialists in work health and safety
Specific objectives ⁷	Connection of technical thinking with economic one so that professional projects with specific identification and professional risk assessment to be understood as a possibility of achieving efficient production at optimum quality.
Course description ⁸	General considerations on heat and mass transfer, acoustics in industrial comfort, gases and vapor flow, heat transfer, simultaneously heat and mass transfer complex phenomenas, industrial comfort

	Assesment		Sche- dule ⁹	Percentage in the final grade (minimum grade) ¹⁰
	Class tests along the semester	20%		
	Home works	%		
A. Final	Other activities	%		
assessment form ¹¹ :	Examination procedures and conditions:exam.oral		Week 14	70% (minimum 5)
	Probe 1: working conditions; percent of the	80%		
Colloquium	final grade %; Oral exam with topics from the theoretical part of the course.	(minimum 5)		
C. Laboratory	30% (minimum 5)			

Course organizer	Associate professor dr.eng. Ioan Gabriel SANDU	
Teaching assistants	Associate professor dr.eng. Ioan Gabriel SANDU	

¹Course name from the curriculum

 $^{^{2}}$ DF – fundamental, DID – in the field, DS – specialty, DC – complementary (from the curriculum)

³ DI – imposed, DO –optional, DL – facultative (from the curriculum)

⁴ Points 3.8, 3.5, 3.6a,b,c, 3.7 from the Course guide – extended form (L-lecture, T-tutorial, LB-laboratory works, P-project, IS-individual study)

⁵ According to 4.1 – Pre-requisites - from the Course guide – extended form

⁶ According to 7.1 from the Course guide – extended form

⁷ According to 7.2 from the Course guide – extended form

 ⁸ Short description of the course, according to point 8 from the Course guide – extended form
⁹ For continuous assessment: weeks 1 – 14, for final assessment – colloquium: week 14, for final assessment-exam: exam period ¹⁰ A minimum grade might be imposed for some assessment stages ¹¹ Exam or colloquium