COURSE GUIDE - short form

Academic year 2024-2025

Course name ¹	PROFESSIONAL PRACTICE				Course code SITM PA 205				
Course type ²	DI	Category ³	DS	Year of study	2	Semester	3	Number of credit points	7

Faculty	Materials Science and Engineering	Number of teaching and learning hours ⁴					
Field Mechanical Engineering			L	Т	LB	Р	IS
Specialization SITM		175					

Pre-requisites from the curriculum ⁵	Compulsory	Not the case
	Recommended	Not the case

General objective ⁶	Development of professional skills in the field of materials investigation to support professional training.
	Appropriate and efficient use of basic knowledge, criteria and methods specific to the field of Materials Science. Cognitive (knowledge and appropriate use of notions related to the field): Knowledge and understanding:
	➤ the way of designing and manufacturing specific thermal and mechanical elements materials engineering;
	notions and terms specific to specific thermal and mechanical systems materials engineering;
	➤ the technological principles underlying the manufacture and operation of the systems specific to materials engineering;
	 criteria for choosing thermal and mechanical systems specific to engineering Materials;
	the performance and reliability of thermal and mechanical systems specific to engineering Materials.
Specific	Explanation and interpretation (the explanation and interpretation of ideas, projects, processes, such as and the theoretical and practical contents of the discipline):
objectives ⁷	interdisciplinary phenomena involved in thermal and mechanical systems specific to materials engineering;
	➤ training the ability to use and apply interdisciplinary knowledge;
	➤ the performance of thermal and mechanical systems specific to materials engineering depending on the constructive functional solutions.
	Technical/professional (design and evaluation of specific practical activities; use of methods, techniques and tools of investigation and application):
	ability to relate theoretical knowledge to practice;
	➤ Ability to compare and choose specific thermal and mechanical systems materials engineering; the ability to maintain and repair devices that have systems in their structure specific to materials engineering;
	Attitudinal – values (manifestation of a positive attitude towards the field): \sim the formation of an othical and responsible professional attitude:
	 understanding the need for interdisciplinary collaboration with specialists in the fields
	Kelaled; ► team building

	Chapter I: Workplace Safety Training and Company Overview
Course	Chapter II: Mechanical Testing and Chemical Analysis Laboratories
description ⁸	Chapter III: Monitoring and carrying out technological manufacturing processes.
	Technological processes of heat treatment and unconventional processing

	Assesment		Sche- dule ⁹	Percentage of the final grade (minimum grade) ¹⁰	
	Class tests along the semester	%			
	Home works	%			
A. Final assessment form ¹¹ :	Other activities	%			
	Examination procedures and conditions: Final Evaluation:	100% (mini- mum grade 5)		100% (minimum 5)	
B. Seminar	Activity during seminar			% (minimum 5)	
C. Laboratory Activity during laboratory				% (minimum 5)	
D. Project Activity during project				% (minimum 5)	

Course organizer		
Teaching assistants	Professor Ph.D. Eng. Petrică VIZUREANU	

¹Course name from the curriculum

¹¹ Exam or colloquium

² DF – fundamental, DID – in the field, DS – specialty, DC – complementary (from the curriculum)

³ DI – imposed, DO –optional, DL – facultative (from the curriculum)

⁴ Points 3.8, 3.5, 3.6a,b,c, 3.7 from the Course guide – extended form (L-lecture, T-tutorial, LB-laboratory works, P-project, IS-individual study)

⁵ According to 4.1 – Pre-requisites - from the Course guide – extended form

⁶ According to 7.1 from the Course guide – extended form

⁷ According to 7.2 from the Course guide – extended form

⁸ Short description of the course, according to point 8 from the Course guide – extended form

 $^{^{9}}$ For continuous assessment: weeks 1 – 14, for final assessment – colloquium: week 14, for final assessment-exam: exam period

¹⁰ A minimum grade might be imposed for some assessment stages