COURSE GUIDE - short form

Academic year 2024-2025

Course name ¹	TECHNIQUES FOR SIMULATION OF THERMO-GAZ-DYNAMICS PROCESSES			Course of	code	TAIPM IA 105			
Course type ²		Category ³	DI	Year of study	1	Semester	1	Number of credit points	4

Faculty	Material Science and Engineering	Number of teaching and learning hours ⁴			ning		
Field	Materials Engineering	Total	L	Т	LB	Р	IS
Specialization	TAIPM	100	14	-	28	-	58

Pre-requisites from the	Compulsory	Not applicable
curriculum ⁵	Recommended	Not applicable

General objective ⁶	Development of profesional and transversal competences in regard to apply numerical techniques to thermal-gaz-dynamics processes. The activities can be performed online using institutional platforms.
Specific objectives ⁷	 Development of integration capacity of knowledge based in regard to solve some complex technical issues specific to engineering area Development of innovation capacity due to rapid change in the market Development of auto-evaluation capacity in regard to successful integration in labor market Defining concepts, theories and basic methods using CFD techniques Usage of basic knowledge in numerical simulation of heat and mass transfer processes
Course description ⁸	CFD simulation, mesh creation, boundary conditions

	Assesment		Sche- dule ⁹	Percentage of the final grade (minimum grade) ¹⁰
	Class tests along the semester	%		
A. Final	Home works	%		
assessment form ¹¹ :	Other activities	10%	week 14	50% (minimum 5)
Colloquium	Examination procedures and conditions: 1. Subject with open questions, working conditions oral, percent 100%.	90% (minimum grade 5)	week 14	(Hilliminani 3)
B. Seminar	Activity during seminar			% (minimum 5)
C. Laboratory	Acttvity during laboratory			50% (minimum 5)
D. Project	Activity during project			% (minimum 5)

Course organizer	Prof. dr. habil. ing. Alina Adriana MINEA	
Teaching assistants	Prof. dr. habil. ing. Alina Adriana MINEA	

¹Course name from the curriculum

² DF – fundamental, DID – in the field, DS – specialty, DC – complementary (from the curriculum)

³ DI – imposed, DO –optional, DL – facultative (from the curriculum)

⁴ Points 3.8, 3.5, 3.6a,b,c, 3.7 from the Course guide – extended form (L-lecture, T-tutorial, LB-laboratory works, P-project, IS-individual study)

⁵ According to 4.1 – Pre-requisites - from the Course guide – extended form

⁶ According to 7.1 from the Course guide – extended form

⁷ According to 7.2 from the Course guide – extended form

⁸ Short description of the course, according to point 8 from the Course guide – extended form

 $^{^9}$ For continuous assessment: weeks 1-14, for final assessment – colloquium: week 14, for final assessment-exam: exam period

¹⁰ A minimum grade might be imposed for some assessment stages

¹¹ Exam or colloquium