COURSE GUIDE – short form

Academic year 2024-2025

Course name ¹	MATERIALS FOR SPECIAL APPLICATIONS 2 Course code					ode	4.SM.14.DS-1		
Course type ²	DS	Category ³	DO	Year of study	IV	Semester	7	Number of credit points	3

Faculty	Materials Science and Engineering	Number of teaching and learning hours ⁴				ning	
Field	Materials engineering	Total	L	Т	LB	Р	IS
Specialization	Materials science	75	28	-	14	-	33

Pre-requisites from the curriculum ⁵	Compulsory	not necessary
	Recommended	Physical Metallurgy

General objective ⁶	Understanding the science of shape memory materials properties and the technology of obtaining them.
Specific objectives ⁷	 Learning theoretical knowledge related to physical and chemical phenomena, based on inteligent materials proprieties. Achieving the ability to research and analyze inteligent materials using a variety of research methods.
Course description ⁸	Phase transformations in shape memory alloys Characteristics and properties of shape memory alloys Obtaining shape memory alloys Applications of shape memory alloys

	Assesment		Sche- dule ⁹	Percentage in the final grade (minimum grade) ¹⁰
	Class tests along the semester	%		
A. Final	Home works	%		
assessment	Other activities	%		
form ¹¹ : Colloquium	Examination procedures and conditions: Probe 1: Oral Examination. The Exam Question papers contains two questions, with a closed answer, equal weight.	100%		50%
B. Seminar	Activity during seminar			0%
C. Laboratory Acttvity during laboratory			50 %	
D. Project Activity during project				0%

Course organizer	Prof. dr. eng. Sergiu STANCIU	
Teaching assistants	Prof. dr. eng. Sergiu STANCIU	

³ DI – imposed, DO –optional, DL – facultative (from the curriculum)

- ⁶ According to 7.1 from the Course guide extended form
- ⁷ According to 7.2 from the Course guide extended form
- ⁸ Short description of the course, according to point 8 from the Course guide extended form

⁹ For continuous assessment: weeks 1 - 14, for final assessment – colloquium: week 14, for final assessment-exam: exam period

- ¹⁰ A minimum grade might be imposed for some assessment stages
- ¹¹ Exam or colloquium

¹Course name from the curriculum

² DF – fundamental, DID – in the field, DS – specialty, DC – complementary (from the curriculum)

⁴ Points 3.8, 3.5, 3.6a,b,c, 3.7 from the Course guide – extended form (L-lecture, T-tutorial, LB-laboratory works, Pproject, IS-individual study) ⁵ According to 4.1 – Pre-requisites - from the Course guide – extended form