COURSE GUIDE – short form

Academic year 2024-2025

Course type ² DS Category ³ DI Year of study 4 Semester 7 Number of credit points 3	Course name ¹	Modeling and Simulation in Materials Science 1				Course co	ode	4.SM.03.DS		
	Course type ²	DS	Category ³	DI	Year of study	4	Semester	7	Number of credit points	3

Faculty	Faculty Faculty of Materials Science and Engineering		Number of teaching and learning hours ⁴					
Field	Materials Engineering	Total	L	Т	LB	Р	IS	
Specialization	Materials Science	75	14	-	14	-	47	

Pre-requisites from the	Compulsory	-
curriculum ⁵	Recommended	-

General objective ⁶	Evaluation and technical problem-solving related materials processed by applying concepts, theories and experimental methods.
Specific objectives ⁷	 Understanding the notion of model and methods of modeling metallurgical processes in terms of complexity and the multitude of variables and parameters that characterize them. Modeling metallurgical processes through the balance of materials and energy. Knowledge of statistical-mathematical methods for obtaining statistical-mathematical models that describe the functional links between the parameters of metallurgical processes and their performance.
Course description ⁸	Technological processes. The concept of model and types of models. Applications of mathematical statistics to the processing and interpretation of experimental data. Empirical mathematical models.

	Assesment	Schedule ⁹	Percentage in the final grade (minimum grade) ¹⁰	
	Class tests along the semester	-		
A. Final	Homework	-		
assessment	Other activities	-		
form ¹¹ : Colloquium	Examination procedures and conditions: 1. Subject with open questions; tasks: answer to open questions; working conditions: oral; percent of the final grade 100 % Onsite evaluation	100 % (minimum 5)	14th week	70% (minimum 5)
C. Laboratory	Activity during laboratory			30%(minimum 5)

Course organizer	Prof. dr. eng. Romeu CHELARIU	
Teaching assistants	Assistant dr. eng. Elena Ionela CHERECHEŞ	

¹Course name from the curriculum

¹¹Exam or colloquium

² DF – fundamental, DID – in the field, DS – specialty, DC – complementary (from the curriculum)

 $^{^3}$ DI – imposed, DO –optional, DL – facultative (from the curriculum)

⁴ Points 3.8, 3.5, 3.6a,b,c, 3.7 from the Course guide – extended form (L-lecture, T-tutorial, LB-laboratory works, P-project, IS-individual study)

 ⁵ According to 4.1 – Pre-requisites - from the Course guide – extended form
 ⁶ According to 7.1 from the Course guide – extended form

⁷ According to 7.2 from the Course guide – extended form

⁸ Short description of the course, according to point 8 from the Course guide – extended form

⁹For continuous assessment: weeks 1 – 14, for final assessment – colloquium: week 14, for final assessment-exam: exam period

¹⁰A minimum grade might be imposed for some assessment stages