COURSE GUIDE - short form

Academic year 2024-2025

Course name ¹	Metallic materials (1)			Course code		3SM06DS			
Course type ²	DS	Category ³	DI	Year of study	3	Semester	6	Number of credit points	4
	Eaculty of Matorials Science and				Numbere	ftoo	ching and loarni	0	

Faculty	Faculty of Materials Science and Engineering	Number of teaching and learning hours ⁴			ning		
Field	Materials Engineering	Total	L	Т	LB	Р	IS
Specialization	Specialization Materials Science		28	-	28	I	44

Pre-requisites from the	Compulsory	Not applicable
curriculum⁵	Recommended	Not applicable

General objective ⁶	Use of knowledge of physical chemistry, physical metallurgy, thermodynamics of alloys for smelting a metal load in the processing unit (and outside of it), in order to obtain a melt to pour raw cast iron parts, compliant in terms of quality and economic efficiency.
Specific objectives ⁷	Knowledge of cast iron grades, processing units specific to this alloy, analysis of the technological stages of charge smelting in a processing unit (and outside of it) necessary for the production of raw cast iron parts.
Course description ⁸	The course is taught by modern teaching methods and contains the following chapters: 1. Introduction (6 hours): Cast iron industry: past, present and future, Cast irons: Definition. Classification criteria. Grades; 2. Metal bath processing (12 hours): Liquid phase, Smelting of cast iron in the cupola, Smelting of cast iron in units with electric heating, Control of the chemical composition of the metal bath during the smelting; 3. Cast iron modification (6 hours): Inoculation, Modification; 4. Physic-chemical and mechanical properties of cast irons (4 hours).

	Assesment		Sche- dule ⁹	Percentage in the final grade (minimum grade) ¹⁰
A. Final	Class tests along the semester	0%		
assessment	Home works	0%		60%
form ¹¹ :	Other activities	%		(minimum 5)
	Examination procedures and conditions:	100%	week 14	(Infinition 3)
Colloquium	Oral exam., 2 subjects on the ticket.	(minimum 5)		
B. Seminar	Activity during seminar			
C. Laboratory	40 % (minimum 5)			
D. Project	Activity during project			

Course organizer	Lecturer PhD eng. Daniela Chicet	
Teaching assistants	Lecturer PhD eng. Daniela Chicet	

¹Course name from the curriculum

 ² DF – fundamental, DID – in the field, DS – specialty, DC – complementary (from the curriculum)
³ DI – imposed, DO –optional, DL – facultative (from the curriculum)
⁴ Points 3.8, 3.5, 3.6a,b,c, 3.7 from the Course guide – extended form (L-lecture, T-tutorial, LB-laboratory works, Pproject, IS-individual study)

⁵ According to 4.1 - Pre-requisites - from the Course guide – extended form

⁶ According to 7.1 from the Course guide – extended form

⁷ According to 7.2 from the Course guide – extended form

 ⁸ Short description of the course, according to point 8 from the Course guide – extended form
⁹ For continuous assessment: weeks 1 – 14, for final assessment – colloquium: week 14, for final assessment-exam: exam period ¹⁰ A minimum grade might be imposed for some assessment stages ¹¹ Exam or colloquium