COURSE GUIDE - short form

Academic year 2024-2025

Course name ¹	THEORETICAL BASICS OF CASTING				Course	code	3.SM.04	3.SM.04.DD	
Course type ²	DD	Category ³	DI	Year of study	Ш	Semester	5	Number of credit points	5

Faculty	Materials Science and Engineering	Number of teaching and learning hours ⁴			ning		
Field	Field Materials Engineering		L	Т	LB	Р	IS
Specialization	Specialization Materials Science		28	-	28		69

Pre-requisites from the	Compulsory	-
curriculum ⁵	Recommended	Cristalography and Mineralogy, Properties and Materials Choice 1

General objective ⁶	The formation of the ability of applying of principles and basic methods for solving well defined problems/ situations, tipical for the phenomena and physico-chemical, crystalographical, thermodinamical and technological processes occuring at the casting and solidification of liquid metals and alloys in moulds in qualified assistance conditions promoting logical reasoning and applying the values of ethics of engineer profesion in resposible task execution
Specific objectives ⁷	The establishing of of knowledge relations between theoretical subjects studied and professional areas as physics, chemistry, mechanics and the technologies of obtaining and processing by casting of the alloys, focussing on the phenomenology specific to solidification in the mould.
Course description8	The parameters of melting process, alloy flowing, cristallisation, solidification front, solidification directing, cristalline structure of castings, segregation phenomena, solid and gas inclusions, casting defects, alloy-mould heat exchange, contraction in cast alloys, retasure formation.

	Assessment		Schedule ⁹	Percentage of the final grade (minimum grade) ¹⁰
Continuous	Class tests along the semes		-	
Continuous	Activity during aboratory (op	en question)	continuous	50%
assessment	Assignments			-
	Final assessment form ¹¹	exam	Exam period	
Final assessment	Examination procedures and conditions: 1. Subject with closed questions; tasks: answer to closed questions; percent 50% 2. Subject with closed questions; tasks: answer to closed questions; percent 50%			50%

Course organizer	Lect.Ph.D.Eng. Daniela CHICET	
Teaching assistants	Lect.Ph.D.Eng. Raluca Maria BLANARIU	

¹Course name from the curriculum

 $^{^2}$ DF – fundamental, DID – in the field, DS – specialty, DC – complementary (from the curriculum)

³ DI – imposed, DO –optional, DL – facultative (from the curriculum)

⁴ Points 3.8, 3.5, 3.6a,b,c, 3.7 from the Course guide – extended form (L-lecture, T-tutorial, LB-laboratory works, P-project, IS-individual study)

⁵ According to 4.1 – Pre-requisites - from the Course guide – extended form
⁶ According to 7.1 from the Course guide – extended form
⁷ According to 7.2 from the Course guide – extended form
⁸ Short description of the course, according to point 8 from the Course guide – extended form

 $^{^{9}}$ For continuous assessment: weeks 1-14, for final assessment – colloquium: week 14, for final assessment-exam: exam period

¹⁰ A minimum grade might be imposed for some assessment stages ¹¹ Exam or colloquium