COURSE GUIDE - short form

Academic year 2024-2025

Course name ¹	Simula and str	ntion and exper rains analysis	erimer s (1)	nt applied to stress	ses	Course code MATAE IA			E IA
Course type ²	DID	Category ³	DS	Year of study	_	Semester	2	Number of credit points	4

Faculty	Faculty of Materials Science and Engineering	Numb	er of t	eachii hour	٧,	d learr	ning
	Materials engineering	Total	L	Т	LB	Р	IS
Specialization	MATAE	100	28		14		58

Pre-requisites from the	Compulsory	
curriculum ⁵	Recommended	

General objective ⁶	Introducing the appropriate mathematical instruments in order to define stress and strain state generated during forming
Specific objectives ⁷	Give of the needed data related to model the forming processes of the advanced materials.
Course description ⁸	Stress field, strain field, link between those into advanced materials forming process. Forming of the advanced materials. Basic concepts related to finite element analysis.

	Assesment		Sche- dule ⁹	Percentage in the final grade (minimum grade) ¹⁰
	Class tests along the semester	20%	week7	
A. Final	Home works	%		
assessment	Other activities	%		60% (minimum 5)
form ¹¹ : Colloquium	Colloquium	80% (mini- mum 5)	Session	100 /8 (minimum 3)
B. Seminar	Activity during seminar			% (minimum 5)
C. Laboratory	Acttvity during laboratory			40% (minimum 5)
D. Project	Activity during project	·		% (minimum 5)

Course organizer	Professor Habil. PhD. Eng. Stefan Lucian TOMA	
Teaching assistants	Lecturer PhD. Eng. Alin Marian CAZAC	

¹Course name from the curriculum

² DF – fundamental, DID – in the field, DS – specialty, DC – complementary (from the curriculum)

³ DI – imposed, DO –optional, DL – facultative (from the curriculum)

⁴ Points 3.8, 3.5, 3.6a,b,c, 3.7 from the Course guide – extended form (L-lecture, T-tutorial, LB-laboratory works, P-project, IS-individual study)

⁵ According to 4.1 – Pre-requisites - from the Course guide – extended form

⁶ According to 7.1 from the Course guide – extended form

⁷ According to 7.2 from the Course guide – extended form

⁸ Short description of the course, according to point 8 from the Course guide – extended form

 $^{^{9}}$ For continuous assessment: weeks 1-14, for final assessment – colloquium: week 14, for final assessment-exam: exam period

¹⁰ A minimum grade might be imposed for some assessment stages	
11 Exam or colloquium	