COURSE GUIDE - short form

Academic year 2024-2025

Course name ¹	DATA ACQUISITION AND PROCESSING IN EXPERIMENTAL ANALYSIS				Course code			MATAE IA 108		
Course type ²		Category ³	DS	Year of study	II	Semester 2		c	mber of credit coints	3

Faculty	MATERIALS SCIENCE AND ENGINEERING	Number of teaching and learning hours ⁴			ning		
Field	MATERIALS ENGINEERING	Total	L	Т	LB	Р	IS
Specialization	MATAE	75	14	-	14	-	47

Pre-requisites from the	Compulsory	Physics, Electronics, Material science, Automation
curriculum ⁵	Recommended	Math

General objective ⁶	Transmit the theoretical and practical knowledge needed to acquire modern techniques to track physical phenomena or technological parameters
Specific objectives ⁷	Provide sufficient theoretical and practical knowledge for the use of specific data acquisition equipment and / or the choice of the electronic components required for a computerized data acquisition system
Course description ⁸	Transducer, Converters, Acquisition boards

	Assesment		Sche- dule ⁹	Percentage in the final grade(minimum grade) ¹⁰
A. Final	Class tests along the semester	20%	6 th , 12 th week	
assessment	Home works	%		60% (minimum
form ¹¹ :	Other activities	%		5)
Exam	Examination procedures and conditions: 1 Treating a two subjects theoretic p ₁ = 35%; p ₂ = 35%; 2. Solving a practical problem P = 30%.	80% (mini- mum 5)	Exam period	3)
B. Seminar	Activity during seminar	<u>I</u>	I	% (minimum 5)
C. Laboratory	40% (minimum 5)			
D. Project	% (minimum 5)			

Course organizer	Professor Habil. PhD. Eng. Stefan Lucian TOMA	
Teaching assistants	Professor Habil. PhD. Eng. Stefan Lucian TOMA	

¹Course name from the curriculum

 $^{^2\,}DF-fundamental,\,DID-in\,the\,field,\,DS-specialty,\,DC-complementary\,(from\,the\,curriculum)$

³ DI – imposed, DO –optional, DL – facultative (from the curriculum)

According to 4.1 – Pre-requisites - from the Course guide – extended form

⁴ Points 3.8, 3.5, 3.6a,b,c, 3.7 from the Course guide – extended form (L-lecture, T-tutorial, LB-laboratory works, P-project, IS-individual study)

⁶ According to 7.1 from the Course guide – extended form

⁷ According to 7.2 from the Course guide – extended form

⁸ Short description of the course, according to point 8 from the Course guide – extended form

 $^{^9}$ For continuous assessment: weeks 1-14, for final assessment – colloquium: week 14, for final assessment-exam: exam period

¹⁰A minimum grade might be imposed for some assessment stages

¹¹Exam or colloquium