COURSE GUIDE - short form

Academic year 2024-2025

Course name	MICRO AND NANOMECHANICAL MATERIALS SYSTEMS					Course	le MATAE 105	MATAE IA 105	
Course type	DID	Category	DI	Year of study	1	Semester	1	Number of credit points	4

Faculty	Materials Science and Engineering	Number of teaching and learning hours					
Field	Materials Engineering	Total	Ш	Η	LB	Ρ	IS
Specialization	Advanced materials and experimental analysis techniques	100	14		14		72

Pre-requisites from the	Compulsory	
curriculum	Recommended	

General objective	Discipline "Micro And Nanomechanical Materials Systems " presents the current general trend regarding the obtaining of advanced materials with special properties.
Specific objectives	Discipline aims, besides forming a systemic thinking, is the making of a link between the theoretical and the practical side in the processing of materials at a nanometric level by specific technologies. This provides a flexibility of thinking and acting to the student, specialist defining features of a market economy.
Course description	Constitutive thin layers from micro and nanomechanical structures. Micromechanical structures typical production processes. Micromechanical systems. Nanoprocessing systems. Nanomechanical systems

	Assesment		Sche- dule ¹	Percentage in the final grade (minimum grade) ²
A. Final	Class tests along the semester	40%	Week 7	
assessment	Home works	%	-	700/ /:-:
form ³ :	Other activities	%	-	70% (minimum
Colloquium	Examination procedures and conditions: Probe 1: Oral examination with 2 subjects;	60% (mini- mum 5)		5)
B. Seminar	Activity during seminar			% (minimum 5)
C. Laboratory	C. Laboratory Activity during laboratory			
D. Project	Activity during project			% (minimum 5)

Course organizer	Ioan Gabriel SANDU	
Teaching assistants	Ioan Gabriel SANDU	

 $^{^{1}}$ For continuous assessment: weeks 1-14, for final assessment – colloquium: week 14, for final assessment-exam: exam period

² A minimum grade might be imposed for some assessment stages

³ Exam or colloquium