COURSE GUIDE – short form

Academic year 2024-2025

Course name ¹						Course code			1.ISI.05. DF	
Course type ²	DF	Category ³	DI	Year of study	1	Semester	1	С	mber of credit oints	4

Faculty	Material Science and Engineering Number of			of teaching and learning hours ⁴				
Field	Industrial Engineering	Total	L	Т	LB	Р	IS	
Specialization Security Engineering in Industry		100	28	-	14	-	58	

Pre-requisites from the	Compulsory	-	
curriculum⁵	Recommended	-	

General objective ⁶	Obtaining competence in computer aided graphical representations in the field of industrial engineering.
Specific objectives ⁷	 Proper interpretation of graphical representations in the field of industrial engineering. Achieving quality graphic representations specific for the field of mechanical engineering.
Course description ⁸	Projection methods. Systems of double and triple orthogonal projections. Layout of projections. Projection layout systems. Slanted views. Sections, Fractures, and Large Scale Detail Representation. Dimensioning. Sketch and scale drawing. Representation scales. Representation, dimensioning, and marking of threads. Representation and dimensioning of flanges. Assembly drawing. Geometric constructions. Drawing of semi-fabric. Representation and marking of joints by welding, gluing, and sewing. Riveted joints. Marking of tolerances and adjustments. Marking of Surface Condition.

	Assessment		Sched ule ⁹	Percentage of the final grade (minimum grade) ¹⁰	
A. Final	Class tests along the semester	50 %			
assessment	Home works	10 %			
form ¹¹ :	Other activities	10 %		60% (minimum	
Exam / Colloquium	Examination procedures and conditions: Drawing of a mechanical part of medium complexity	30% (mini- mum grade 5)		5)	
B. Seminar	Activity during seminar			% (minimum 5)	
C. Laboratory	40 % (minimum 5)				
D. Project	% (minimum 5)				

Course organizer	Associate Professor PhD eng. Liviu Prună	
Teaching assistants	Lecturer PhD eng. Ion Antonescu	

¹Course name from the curriculum

⁴ Points 3.8, 3.5, 3.6a,b,c, 3.7 from the Course guide – extended form (L-lecture, T-tutorial, LB-laboratory works, P-project, IS-individual study)

⁷ According to 7.2 from the Course guide – extended form

¹⁰ A minimum grade might be imposed for some assessment stages

¹¹ Exam or colloquium

² DF – fundamental, DID – in the field, DS – specialty, DC – complementary (from the curriculum)

³ DI – imposed, DO –optional, DL – facultative (from the curriculum)

⁵ According to 4.1 – Pre-requisites - from the Course guide – extended form

⁶ According to 7.1 from the Course guide – extended form

⁸ Short description of the course, according to point 8 from the Course guide – extended form

 $^{^9}$ For continuous assessment: weeks 1 - 14, for final assessment – colloquium: week 14, for final assessment-exam: exam period