COURSE GUIDE - short form

Academic year 2024-2025

Course name ¹ Strength of materials					Course code 2IMAT05DID					
Course type ²	DID	Category ³	DI	Year of study	2	Semester	3		mber of dit points	4

Faculty	Faculty Materials Science and Engineering			Number of teaching and learning hours ⁴					
Field Materials engineering		Total	L	Т	LB	Р	IS		
Specialization	Engineering of Materials Processing	100	28	14	14	-	44		

Pre-requisites from the curriculum ⁵	Compulsory	Not stipulated.
	Recommended	Mathematical analysis, Algebra, Mechanics, Physics.

General objective ⁶	Conveying knowledge concerning the general principles of the strength, stiffness and stability computations, respectively, for the main types of elements used in machine building.				
Specific objectives ⁷	 Experimental determination of the behavior of materials under mechanical testing; Present simple load and problem-solving design and checking Solving problems on calculation of deflections to simple requests; Solving problems of design and checking buckling Solving the problems of combined loads. 				
Course description ⁸	Basic theories, loads, stresses, strains, conventional stress-strain diagram, Hooke's law, axial load, transverse shear, torsion, bending, buckling, combined loadings.				

	Assesment		Sche- dule ⁹	Percentage in the final grade (minimum grade) ¹⁰
	Class tests along the semester	25%	week 8	
	Home works	25%	week 1-14	
A. Final assessment form 11:	Examination procedures and conditions: Probe1: Problem of axial load; tasks: solving; working conditions: writing; percent of the final grade: 25% Probe 2: Problem of transverse shear or torsion; tasks: solving; working conditions: writing; percent of the final grade: 25% Probe 3: Problem of bending; tasks: solving; working conditions: writing; percent of the final grade: 25% Probe 4: Theoretical subject; tasks: assumptions, judgments; working conditions: writing; percent of the final grade: 25%	50% (mini- mum 5)	exam period	80% (minimum 5)
B. Seminar	Activity during seminar			10% (minimum 5)
C. Laboratory	10% (minimum 5)			
D. Project	% (minimum 5)			

Course organizer	PhD Lecturer Liviu ANDRUŞCĂ	
Teaching assistants	PhD Lecturer Liviu ANDRUŞCĂ	

¹Course name from the curriculum

 $^{^2}$ DF – fundamental, DID – in the field, DS – specialty, DC – complementary (from the curriculum)

³ DI – imposed, DO –optional, DL – facultative (from the curriculum)

⁴ Points 3.8, 3.5, 3.6a,b,c, 3.7 from the Course guide – extended form (L-lecture, T-tutorial, LB-laboratory works, P-project, IS-individual study)

⁵ According to 4.1 – Pre-requisites - from the Course guide – extended form

⁶ According to 7.1 from the Course guide – extended form

⁷ According to 7.2 from the Course guide – extended form

⁸ Short description of the course, according to point 8 from the Course guide – extended form

 $^{^9}$ For continuous assessment: weeks 1-14, for final assessment – colloquium: week 14, for final assessment-exam: exam period

¹⁰ A minimum grade might be imposed for some assessment stages

¹¹ Exam or colloquium