COURSE GUIDE - short form

Academic year 2024-2025

Course name ¹	THERMOTECHNICS				Course code			2.EPI.07.DD.		
Course type ²	DID	Category ³	DI	Year of study	2	Semester	2	(mber of credit points	4

Faculty	Material Science and Engineering	Number of teaching and learning hours ⁴		ng			
Field	Mechanical Engineering	Total	Г	Т	LB	Р	IS
Specialization	Equipment for Industrial Processes	100	28		28		52

Pre-requisites from the	Compulsory	- MATHEMATICS, PHYSICS, CHEMESTRY
curriculum ⁵	Recommended	MOLECULAR PHYSICS THERMODYNAMICS

General objective ⁶	BASIC OF THERMODYNAMICS AND HEAT TRANSFER
Specific objectives ⁷	APLICATIONS. GRAPHICS, NOMOGRAMS, DIAGRAMS.RESULTS INTERPRETATION.OTHER.
Course description ⁸	FUNDAMENTALS.FIRST PRINCIPLE.SECOND PRINCIPLE.PERFECT GASES.REAL GASES. MOIST AIR. APLICATION OF PERFECT GASES: COMPRESSORS.MAIP.APLICATION OF REAL GASES: THERMAL INSTALLATIONS. FUNDAMENTALS OF HEAT TRANSFER: CONDUCTION. CONVECTION. RADIATION

	Assesment		Sche- dule ⁹	Percentage in the final grade (minimum grade)90
A. Final	Class tests along the semester	%		
assessment	Home works	%		
form ¹¹ :	Other activities	%		50 %
Exam	Examination procedures and conditions:	100%		
B. Seminar	Activity during seminar	·		%
C. Laboratory	50%			
D. Project	%			

Course organizer	Associated proffessor Ph eng. STADOLEANU OVIDIU VIRGIL	
Teaching assistants	Associated proffessor Ph eng. STADOLEANU OVIDIU VIRGIL	

¹Course name from the curriculum

 $^{^2\,}DF-fundamental,\,DID-in\,the\,field,\,DS-specialty,\,DC-complementary\,(from\,the\,curriculum)$

³ DI – imposed, DO –optional, DL – facultative (from the curriculum)

⁴ Points 3.8, 3.5, 3.6a,b,c, 3.7 from the Course guide – extended form (L-lecture, T-tutorial, LB-laboratory works, P-project, IS-individual study)

⁵According to 4.1 –Pre-requisites - from the Course guide – extended form

⁶According to 7.1 from the Course guide – extended form

⁷ According to 7.2 from the Course guide – extended form

⁸ Short description of the course, according to point 8 from the Course guide – extended form

⁹Course name from the curriculum

² DF – fundamental, DID – in the field, DS – specialty, DC – complementary (from the curriculum)

³ DI – imposed, DO –optional, DL – facultative (from the curriculum)

According to 4.1 – Pre-requisites - from the Course guide – extended form

⁴ Points 3.8, 3.5, 3.6a,b,c, 3.7 from the Course guide – extended form (L-lecture, T-tutorial, LB-laboratory works, P-project, IS-individual study)

⁶ According to 7.1 from the Course guide – extended form

⁷ According to 7.2 from the Course guide – extended form

⁸ Short description of the course, according to point 8 from the Course guide – extended form

 $^{^9}$ For continuous assessment: weeks 1-14, for final assessment – colloquium: week 14, for final assessment-exam: exam period

¹⁰ A minimum grade might be imposed for some assessment stages

¹¹ Exam or colloquium