COURSE GUIDE - short form

Academic year 2024-2025

Course name ¹	PHYSICS 2				Course co	ode	1.IMAT.08	
Course type ²	DF	DF Category ³ DI Year of study 1		Semester	2	Number of credit points	5	

Faculty	Material Science & Engineering	Number of teaching and learning hours ⁴			ning		
Field	Materials Engineering	Total	L	Т	LB	Р	IS
Specialization	Materials Science	125	28	-	14	-	83

Pre-requisites from the curriculum ⁵	Compulsory	
	Recommended	Superior Mathematics

General objective ⁶	Acquiring physics knowledge as the basis for specialized disciplines. Assimilation of knowledge from modern physics for the complete scientific training of future engineers. Acquiring application and theoretical methods of laboratory and individual bibliographic exercise.				
Specific objectives ⁷	 This course is intended to introduce the students of engineering to those areas of Electricity and Magnetics, Solid Body Physics, Elements of Quantum Mechanics. (theoretical and practical problems of mechanics) The ability to verify through practical experiments the theoretical notions taught, in order to develop the students' practical sense. The acquisition by students of a minimum of strict knowledge necessary to understand the notions that will be taught to them in the specialized discipline. 				
Course description8	 Electricity Chapter Magnetics Chapter Solid Body Physics Chapter Elements of Quantum Mechanics 				

	Assesment		Sche- dule ⁹	Percentage of the final grade (minimum grade) ¹⁰
Λ Final	Class tests along the semester	%		
A. Final	Home works	%		
assessment form ¹¹ :	Other activities	%		60 % (minimum 5)
Exam	Examination procedures and conditions: Writting Exam	100% (mini-mum grade 5)	Exam period	76 (Hilliminum 3)
B. Seminar	Activity during seminar			% (minimum 5)
C. Laboratory Acttvity during laboratory				40% (minimum 5)
D. Project	Activity during project			% (minimum 5)

Course organizer	Professor PHD, Maricel Agop	
Teaching assistants	Lecturer, PHD, Cristina-Marcela RUSU	

¹Course name from the curriculum

² DF – fundamental, DID – in the field, DS – specialty, DC – complementary (from the curriculum)

³ DI – imposed, DO –optional, DL – facultative (from the curriculum)

⁴ Points 3.8, 3.5, 3.6a,b,c, 3.7 from the Course guide – extended form (L-lecture, T-tutorial, LB-laboratory works, P-project, IS-individual study)

⁵ According to 4.1 – Pre-requisites - from the Course guide – extended form

⁶ According to 7.1 from the Course guide – extended form

⁷ According to 7.2 from the Course guide – extended form

⁸ Short description of the course, according to point 8 from the Course guide – extended form

 $^{^9}$ For continuous assessment: weeks 1-14, for final assessment – colloquium: week 14, for final assessment-exam: exam period

¹⁰ A minimum grade might be imposed for some assessment stages

¹¹ Exam or colloquium