COURSE GUIDE - short form

Academic year 2024-2025

Course name ¹					Cour	de			
Course type ²	DF	Category ³	DI	Year of study	1	Semester	1	Number of credit points	4

Faculty	Material Science and Engineering	Number of teaching and learning hours ⁴			ning		
Field	Material Engineering		L	Т	LB	Р	IS
Specialization	Material Processing Engineering		28	-	14	-	58

Pre-requisites from the curriculum ⁵	Compulsory	-
	Recommended	-

r	·
General objective ⁶	Obtaining competence in graphical representations in the field of materials engineering
Specific objectives ⁷	 Proper interpretation of graphical representations in the field of materials engineering. Achieving quality graphic representations specific to the field of materials engineering.
Course description ⁸	Projection methods. Systems of double and triple orthogonal projections. Layout of projections. Projection layout systems. Slanted views. Sections, Fractures, and Large Scale Detail Representation. Dimensioning. Sketch and scale drawing. Representation scales. Representation, dimensioning, and marking of threads. Representation and dimensioning of flanges. Assembly drawing. Geometric constructions. Drawing of semifabric. Representation and marking of joints by welding, gluing, and sewing. Riveted joints. Marking of tolerances and adjustments. Marking of Surface Condition.

	Assessment		Sched ule ⁹	Percentage of the final grade (minimum grade) ¹⁰	
A. Final	Class tests along the semester	50 %			
assessment form ¹¹ :	Home works	10 %			
	Other activities	10 %		60% (minimum	
Exam / Colloquium	Examination procedures and conditions: Drawing of a mechanical part of medium complexity	30% (mini- mum grade 5)		5)	
B. Seminar	Activity during seminar			% (minimum 5)	
C. Laboratory Activity during laboratory				40 % (minimum 5)	
D. Project Activity during project				% (minimum 5)	

Course organizer	Lecturer PhD eng. Ion Antonescu	
Teaching assistants	Lecturer PhD eng. Ion Antonescu	

¹Course name from the curriculum

 $^{^2}$ DF – fundamental, DID – in the field, DS – specialty, DC – complementary (from the curriculum)

³ DI – imposed, DO –optional, DL – facultative (from the curriculum)

⁴ Points 3.8, 3.5, 3.6a,b,c, 3.7 from the Course guide – extended form (L-lecture, T-tutorial, LB-laboratory works, P-project, IS-individual study)

According to 4.1 – Pre-requisites - from the Course guide – extended form

⁶ According to 7.1 from the Course guide – extended form

⁷ According to 7.2 from the Course guide – extended form

⁸ Short description of the course, according to point 8 from the Course guide – extended form

 $^{^9}$ For continuous assessment: weeks 1-14, for final assessment – colloquium: week 14, for final assessment-exam: exam period

¹⁰ A minimum grade might be imposed for some assessment stages

¹¹ Exam or colloquium