COURSE GUIDE – short form

Academic year 2024-2025

Course name ¹	PHYSICS 1				Course	code	1.IMAT.03		
Course type ²	DF	Category ³	DI	Year of study	1	Semester	1	Number of credit points	4

Faculty	Material Science & Engineering		Number of teaching and learning hours ⁴					
Field	Field Materials Engineering		L	Т	LB	Р	IS	
Specialization	Specialization Materials Science		28	-	14	-	58	

Pre-requisites from the	Compulsory	
curriculum⁵	Recommended	Superior Mathematics

General objective ⁶	Acquiring physics knowledge as the basis for specialized disciplines. Assimilation of knowledge from modern physics for the complete scientific training of future engineers. Acquiring application and theoretical methods of laboratory and individual bibliographic exercise.					
Specific objectives ⁷	 This course is intended to introduce the students of engineering to those areas of Classical Mechanics, Thermodynamics and Quantum Mechanics. (theoretical and practical problems of mechanics) The ability to verify through practical experiments the theoretical notions taught, in order to develop the students' practical sense. The acquisition by students of a minimum of strict knowledge necessary to understand the notions that will be taught to them in the specialized discipline. 					
Course description ⁸	 Classical Mechanics The Principles of Classical Mechanics. Conservation Laws and Theorems Harmonic Oscillation Motion, Damped Oscillation Motion, Forced Oscillation Motion Termodynamics Fluids Mechanics. Basic characteristics of fluids Statics of Fluids. Dynamics of Fluids 					

Assesment			Sche- dule ⁹	Percentage of the final grade (minimum grade) ¹⁰
	Class tests along the semester	%		
A. Final	Home works	%		
assessment	Other activities	%		
form ¹¹ : Exam	Examination procedures and conditions: Writting Exam	100% (mini- mum grade 5)	Exam period	60 % (minimum 5)
B. Seminar Activity during seminar				% (minimum 5)
C. Laboratory Acttvity during laboratory			40% (minimum 5)	
D. Project Activity during project				% (minimum 5)

Course organizer	Professor PHD, Maricel Agop	
Teaching assistants	Lecturer, PHD, Cristina-Marcela RUSU	

¹Course name from the curriculum

¹⁰ A minimum grade might be imposed for some assessment stages

¹¹ Exam or colloquium

² DF – fundamental, DID – in the field, DS – specialty, DC – complementary (from the curriculum)

³ DI – imposed, DO –optional, DL – facultative (from the curriculum)

⁴ Points 3.8, 3.5, 3.6a,b,c, 3.7 from the Course guide – extended form (L-lecture, T-tutorial, LB-laboratory works, P-⁵ According to 4.1 – Pre-requisites - from the Course guide – extended form
 ⁶ According to 7.1 from the Course guide – extended form

⁷ According to 7.2 from the Course guide – extended form

⁸ Short description of the course, according to point 8 from the Course guide – extended form

⁹ For continuous assessment: weeks 1 - 14, for final assessment – colloquium: week 14, for final assessment-exam: exam period