COURSE GUIDE MATHEMATICAL ANALYSIS-short form

Academic year 2024-2025

	Course name ¹	Mathematical Analysis				Course code			1IM	1IMAT01DF		
	Course type ²	DF	Category ³	DI	Year of study	1	Se	mester	1		ber of points	5
_												
	Faculty	Material Science and Engineering			N	Number of teaching and learning hours ⁴						
	Field	Material Engineering			Т	otal	L	T	LB	P	IS	

125

28

28

69

Pre-requisites from the curriculum ⁵		Algebra, Mathematical Analysis, high-school level (M2 Mathematics)
Currentum	Recommended	-

General objective ⁶	The main objective is that the student becomes familiar with mathematical thinking and is able to solve practical problems
Specific objectives ⁷	• This course is intended to introduce the students of engineering to those areas of mathematical analysis, which will be used in technical specific fields of study.
Course description ⁸	 I. Sequences and series of real numbers. II. Real functions of one real variable. Limit, continuity, differentiability, Taylor formula. III. Real and vectorial functions of several variables. Limit, continuity, partial derivatives, differentiability, Taylor formula, extrema. IV. Integral calculus. Indefinite and definite integrals, line integrals, multiple integrals.

	Assessment	Schedule ⁹	Percentage of the final grade (minimum grade) ¹⁰
	Class tests along the semester		
A. Final	Home works		
assessment	Other activities		
form ¹¹	Examination procedures and conditions: Exam Test paper, 5 problems, 100% (minim 5)	Session	70 % (minim 5)
B. Seminar	Activity during seminar	Weekly	30 % (minim 5)
C. Laboratory	Activity during laboratory		
D. Project	Activity during project		

Course organizer	Associate professor Ph.D. Daniela Roşu	
Teaching assistants	Associate professor Ph.D. Daniela Roşu	

¹Course name from the curriculum

Specialization

Material Science

² DF – fundamental, DID – in the field, DS – specialty, DC – complementary (from the curriculum)

³ DI – imposed, DO –optional, DL – facultative (from the curriculum)

⁴ Points 3.8, 3.5, 3.6a,b,c, 3.7 from the Course guide – extended form (L-lecture, T-tutorial, LB-laboratory works, Pproject, IS-individual study)
⁵ According to 4.1 – Pre-requisites - from the Course guide – extended form

⁶ According to 7.1 from the Course guide – extended form

⁷ According to 7.2 from the Course guide – extended form

⁸ Short description of the course, according to point 8 from the Course guide – extended form

 $^{^{9}}$ For continuous assessment: weeks 1-14, for final assessment – colloquium: week 14, for final assessment-exam: exam period

¹⁰ A minimum grade might be imposed for some assessment stages