COURSE GUIDE – short form

Academic year 2024-2025

Course name ¹	Research / Practice (sem.4)				Course code MATAE PA 206				
Course type ²	DS	Category ³	DI	Year of study	2	Semester	4	Number of credit points	10

Faculty	Materials Science and Engineering	Number of teaching and learning hours ⁴					
Field	Materials Engineering	Total	L	Т	LB	Р	IS
Specialization	Advanced Materials and Experimental Analysis Techniques		-	-	178	-	72

Pre-requisites from the	Compulsory	
curriculum⁵	Recommended	

General objective ⁶	Training human resource such as to be able to contribute to the development of scientific knowledge, by cultivating theoretical and practical capacities, necessary for the use of plastic deformation and mechanical testing techniques, available at laboratory level.
Specific objectives ⁷	Acquiring the operation mode on the plastic deformation and mechanical testing equipment of the laboratory and afferent software: experimental rolling mill with annular silica bars furnace (T_{max} 1050°C); self-compression free forging hammer; HYDRAMOLD hydraulic press of 750 kN (software ESAM); INSTRON 3382 tensile testing machine (software BLUEHILL 4.13) equipped with thermal chamber and micro hardness tester with afferent software.
Course description ⁸	 Acquiring the structure and functioning principle of experimental rolling mill Hot rolling and calculation of section reduction degree Acquiring the structure and functioning principle of free forging hammer Free forging of some cylindrical samples Acquiring the structure and the functioning principle of HYDRAMOLD hydraulic press of 750 kN and ESAM software Pressing, recording and interpretation of displacement (specific deformation)-force (mechanical stress) curves Obtaining some "fish bone" configuration specimens for tensile testing Acquiring the structure and functioning principle of INSTRON 3382 tensile testing machine (software BLUEHILL 4.13) equipped with thermal chamber Recording and interpreting the tensile curves to failure and with loading-unloading cycles Loading-unloading tensile tests at different temperatures and with constant strain-heating Recording and interpreting the tensile loading-unloading curves at different temperatures and with constant strain-heating Acquiring the structure and functioning principle of the micro hardness tester of the laboratory Micro-hardness tests and data processing

Assessment			Percentage in the final grade (minimum grade) ¹⁰
Class tests along the semester	%		
Home works	%		

A. Final	Other activities	%		
assessment form ¹¹ : Exam	Final evaluation	% (mini- mum 5)		
B. Seminar	Activity during seminar: evidence of answers, paper (reports, scientific reviews)	er portfolic)	
C. Laboratory	Activity during laboratory Written test Laboratory register (experimental files, reviews) Practical demonstration 		100 %	
D. Project	Activity during project			

Course organizer		
Teaching assistants	Prof.dr.ing. Leandru-Gheorghe BUJOREANU	

¹Course name from the curriculum

- ⁵ According to 4.1 Pre-requisites from the Course guide extended form
- ⁶ According to 7.1 from the Course guide extended form
- ⁷ According to 7.2 from the Course guide extended form

⁸ Short description of the course, according to point 8 from the Course guide – extended form

⁹ For continuous assessment: weeks 1 - 14, for final assessment – colloquium: week 14, for final assessment-exam: exam period

¹⁰ A minimum grade might be imposed for some assessment stages

¹¹ Exam or colloquium

² DF – fundamental, DID – in the field, DS – specialty, DC – complementary (from the curriculum)

 $^{^{3}}$ DI – imposed, DO –optional, DL – facultative (from the curriculum)

⁴ Points 3.8, 3.5, 3.6a,b,c, 3.7 from the Course guide – extended form (L-lecture, T-tutorial, LB-laboratory works, P-project, IS-individual study)