COURSE GUIDE - short form

Academic year 2021-2022

Course name ¹	ourse name ¹ Advanced Sintered Materials			Course code		MATAEIA202			
Course type ²	DA	Category ³	DI	Year of study	2	Semester	3	Number of credit points	5

Faculty	Materials Science and Engineering	Number of teaching and learning hours ⁴					
Field	Materials Engineering	Total	L	Т	LB	Р	IS
Specialization	Advanced Materials and Experimental Analysis Techniques	125	14	-	14	-	97

Pre-requisites from the curriculum ⁵	Compulsory	-
	Recommended	-

General objective ⁶	The knowledge of the sintering process, of the mechanisms that lead to obtaining sintered materials with properties appropriate to the purpose.						
Specific objectives ⁷	 Processes and mechanisms involved in obtaining advanced sintered materials. Structural characterization of advanced sintered materials. 						
Course description ⁸	Thermodynamics and kinetics of the sintering process. Theories and models of densification. Evolution of microstructure. Liquid phase sintering. Aluminum sintered materials. Titanium sintered materials.						

	Sche- dule ⁹	Percentage in the final grade (minimum grade) ¹⁰		
	Class tests along the semester	-		
A. Final	Home works	-		
assessment	Other activities	-		70 %
form ¹¹ : Colloquium	Examination procedures and conditions: 1. Subject with open questions; tasks: answer to open questions; working conditions: oral; percent of the final grade 100 %	100 % (minimum 5)	14th week	(minimum 5)
B. Seminar	Activity during seminar			-
C. Laboratory	Acttvity during laboratory			30 % (minimum 5)
D. Project	Activity during project			-

Course organizer	Prof. dr. eng. Romeu Chelariu	
Teaching assistants	Prof. dr. eng. Romeu Chelariu	

¹Course name from the curriculum

 $^{^{2}}$ DF – fundamental, DID – in the field, DS – specialty, DC – complementary (from the curriculum)

³ DI – imposed, DO –optional, DL – facultative (from the curriculum)

⁴ Points 3.8, 3.5, 3.6a,b,c, 3.7 from the Course guide – extended form (L-lecture, T-tutorial, LB-laboratory works, P-project, IS-individual study)

⁵ According to 4.1 – Pre-requisites - from the Course guide – extended form

⁶ According to 7.1 from the Course guide – extended form

According to 7.2 from the Course guide – extended form

⁸ Short description of the course, according to point 8 from the Course guide – extended form

⁹ For continuous assessment: weeks 1 – 14, for final assessment – colloquium: week 14, for final assessment-exam: exam period

 $^{^{10}}$ A minimum grade might be imposed for some assessment stages

¹¹ Exam or colloquium