COURSE GUIDE – short form

Academic year 2021-2022

	Simulation and experiment applied to stresses and strains analysis (1)					Course code			MATAE IA 109	
Course type ²	DID	Category ³	DS	Year of study	Ι	Semester	2	C	mber of credit points	5

Faculty	Faculty Faculty of Materials Science and Engineering			Number of teaching and learning hours ⁴						
	Materials engineering	Total	L	Т	LB	Ρ	IS			
Specialization	MATAE	42	28		14		83			

Pre-requisites from the curriculum ⁵	Compulsory	
	Recommended	

General objective ⁶	Introducing the appropriate mathematical instruments in order to define stress and strain state generated during forming
Specific objectives ⁷	• Give of the needed data related to model the forming processes of the advanced materials.
Course description ⁸ Stress field, strain field, link between those into advanced materials forming process. F the advanced materials. Basic concepts related to finite element analysis.	

	Assesment		Sche- dule ⁹	Percentage in the final grade (minimum grade) ¹⁰
A. Final	Class tests along the semester	10%	week7	
assessment	Home works	%		
form ¹¹ :	Other activities	%		60% (minimum 5)
Exam / Colloquium	Colloquium	50% (mini- mum 5)	Session	00 % (minimum 3)
B. Seminar	Activity during seminar			% (minimum 5)
C. Laboratory Acttvity during laboratory				40% (minimum 5)
D. Project Activity during project				% (minimum 5)

Course organizer	Asociate Professor PhD. Eng. Stefan Lucian TOMA	
Teaching assistants	Assist. PhD. Eng. Alin Marian CAZAC	

¹Course name from the curriculum

² DF – fundamental, DID – in the field, DS – specialty, DC – complementary (from the curriculum)

³ DI – imposed, DO –optional, DL – facultative (from the curriculum)

⁴ Points 3.8, 3.5, 3.6a,b,c, 3.7 from the Course guide – extended form (L-lecture, T-tutorial, LB-laboratory works, P-project, IS-individual study)

⁵ According to 4.1 – Pre-requisites - from the Course guide – extended form

⁶ According to 7.1 from the Course guide – extended form

⁷ According to 7.2 from the Course guide – extended form

⁸ Short description of the course, according to point 8 from the Course guide – extended form

 $^{^{9}}$ For continuous assessment: weeks 1 – 14, for final assessment – colloquium: week 14, for final assessment-exam: exam period

¹⁰ A minimum grade might be imposed for some assessment stages¹¹ Exam or colloquium