COURSE GUIDE - short form

Academic year 2021-2022

Course name ¹	Modeling and Simulation in Materials Science (2)				Course co	ode	4SM09DS		
Course type ²	DS	Category ³	DI	Year of study	4	Semester	8	Number of credit points	4

Faculty	Faculty of Materials Science and Engineering		Number of teaching and learning hours ⁴					
Field	Materials Engineering	Total	Г	Т	LB	Р	IS	
Specialization	Materials Science	100	28	-	42	ı	30	

Pre-requisites from the	Compulsory	-
curriculum ⁵	Recommended	-

General objective ⁶	Combining the knowledge, principles and methods of the technical sciences of the field with the principles and methods used in the analysis, modeling and optimization of metallurgical processes.
Specific objectives ⁷	 Knowledge of statistical and mathematical methods for obtaining mathematical models describing functional relations between the input and output variables of metallurgical processes. Optimization of metallurgical processes by specific methods.
Course description ⁸	First-order factorial experimental programs. Second-order factorial experimental programs. Optimization without constraints of the metallurgical processes. Optimization with constraints of the metallurgical processes through linear programming.

	Assesment Sche-dule ⁹					
	Class tests along the semester	-				
	Home works	-				
A. Final	Other activities	-				
assessment form ¹¹ :	Examination procedures and conditions: 1.Subject with open questions; tasks: answers to open questions; working conditions: oral; percent of the final grade 50 % 2.Subject with open questions; tasks: answers to open questions; working conditions: oral; percent of the final grade 50 %	100 % (minimum 5)	Exam period	70 % (minimum 5)		
B. Seminar	Activity during seminar			-		
C. Laboratory Activity during laboratory				30 % (minimum 5)		
D. Project Activity during project				-		

Course organizer	Prof. dr. eng. Romeu CHELARIU	
Teaching assistants	Assistant dr. eng. Elena Ionela CHERECHEŞ	

Formular TUIASI.POB.04-F2, rev.0

 $^{^1\}text{Course}$ name from the curriculum 2 DF – fundamental, DID – in the field, DS – specialty, DC – complementary (from the curriculum) 2 DF – fundamental, DID – in the field, DS – specialty, DC – complementary (from the curriculum)

³ DI – imposed, DO –optional, DL – facultative (from the curriculum)

⁴ Points 3.8, 3.5, 3.6a,b,c, 3.7 from the Course guide – extended form (L-lecture, T-tutorial, LB-laboratory works, P-project, IS-individual study)
⁵ According to 4.1 – Pre-requisites - from the Course guide – extended form
⁶ According to 7.1 from the Course guide – extended form

According to 7.2 from the Course guide – extended form

8 Short description of the course, according to point 8 from the Course guide – extended form

9 For continuous assessment: weeks 1 – 14, for final assessment – colloquium: week 14, for final assessment-exam: exam period

10 A minimum grade might be imposed for some assessment stages

11 Exam or colloquium