COURSE GUIDE – short form

Academic year 2021-2022

Course name	FINITE ELEMENT ANALYSIS				Course of	code	4EPI14[4EPI14DD	
Course type	DD	Category	DO	Year of study	4	Semester	8	Number of credit points	5

Faculty	Faculty Materials Science and Engineering		Number of teaching and learning hours						
Field	Mechanical Engineering	Total	L	Т	LB	Р	IS		
Specialization	Equipment for industrial processing	70	42		28		28		

Pre-requisites from the curriculum	Compulsory	
	Recommended	

General objective	Knowledge of the principles of using the finite element method, with direct applications in the design of industrial processing equipment or products that can be obtained with them. Knowing how to use dedicated software will eliminate boundary states that can jeopardize the functionality of a part, assembly, or equipment. Making the right decisions for choosing materials processing technologies and putting into practice approaches based on coherent scientific arguments, regarding the correct operation of parts or assemblies in service, respecting the requirements of quality engineering.
Specific objectives	Materials selection depending on the application. Investigation of materials characteristics and properties. Investigation of the components behavior in an assembly or even the equipment that include them. Developing skills for elaborating specific reports and scientific articles.
Course description	Introduction to the finite element method. Types of analysis. Basics of strength of materials Notions of finite elements and the network of finite elements. One-dimensional finite elements. Two-dimensional finite elements. Three-dimensional finite elements. Simulation of non-removable assemblies. Materials properties and boundary conditions. Linear static analysis. Nonlinear analysis. Dynamic analysis. Thermal analysis. Fluid dynamics analysis. Fatigue resistance analysis. Post-processing techniques. Experiment validation and data acquisition. Errors and errors in using the finite element method.

	Assessment		Sche- dule	Percentage in the final grade (minimum grade)	
	Class tests along the semester	%			
A. Final assessment form: Exam	Home works	%			
	Other activities	%		1	
	 Examination procedures and conditions: 1. Category: theoretical; subject with closed questions; conditions: oral; weight in final grade: 50%; 2. Category: theoretical; subject with closed questions; conditions: oral; weight in final grade: 50% 	100% (minimum 5)		70% (minimum 5)	
B. Seminar	Activity during seminar			% (minimum 5)	
C. Laboratory	Laboratory Activity during laboratory			30% (minimum 5)	
D. Project	ect Activity during project			% (minimum 5)	

Course organizer	Associate professor PH.D. eng. Ioan RUSU	
Teaching assistants	Assist. PH.S. eng. Constantin MIREA	